
On the Robustness of Human Pose Estimation

1Naman Jain† 1Sahil Shah† 2Abhishek Kumar 1Arjun Jain

1Department of Computer Science, IIT Bombay, 2Gobasco AI Labs

{namanjain, sahilshah, ajain}@cse.iitb.ac.in, abhisharayiya@gmail.com

Abstract

This paper provides, to the best of our knowledge, the

first comprehensive and exhaustive study of adversarial

attacks on human pose estimation. Besides highlighting

the important differences between well-studied classifica-

tion and human pose-estimation systems w.r.t. adversar-

ial attacks, we also provide deep insights into the design

choices of pose-estimation systems to shape future work. We

compare the robustness of several pose-estimation architec-

tures trained on the standard datasets, MPII and COCO.

In doing so, we also explore the problem of attacking non-

classification based networks including regression based

networks, which has been virtually unexplored in the past.

We find that compared to classification and semantic seg-

mentation, human pose estimation architectures are rela-

tively robust to adversarial attacks with the single-step at-

tacks being surprisingly ineffective. Our study show that

the heatmap-based pose-estimation models fare better than

their direct regression-based counterparts and that the sys-

tems which explicitly model anthropomorphic semantics of

human body are significantly more robust. We find that the

targeted attacks are more difficult to obtain than untargeted

ones and some body-joints are easier to fool than the oth-

ers. We present visualizations of universal perturbations

to facilitate unprecedented insights into their workings on

pose-estimation. Additionally, we show them to generalize

well across different networks on both the datasets.

1. Introduction

The past few years have witnessed an exponential growth

in the real-world deployment of deep-learning based au-

tomation systems, due to its phenomenal ability to learn

complex task-dependent features and decision-functions di-

rectly from the data. However, alongside their innumerable

successes deep-learning systems are extremely prone to ad-

versarial attacks which refer to imperceptible noise that can

significantly affect performance! Therefore, the study and

†equal contribution

defense against adversarial attacks on deep-learning sys-

tems is critical towards their real-world deployment.

Discovering the extent of the harmful effects of adversar-

ial examples is still and active are of research. The study of

adversarial attacks on classification systems [2, 4, 6, 11, 12,

20,22,29,30] has seen more activity than regression systems

[7, 34]. Human-pose estimation, referred to as HPE for

brevity, is one such application that uses a blend of regres-

sion and classification approaches to learn the composition-

ality of human bodies, warranting a separate study. To this

end, we present the first comprehensive study of the effects

of adversarial attacks on HPE systems and their effective-

ness with respect to different design choices like heatmaps

vs. direct regression, multi-scale processing, attention and

compositional constraints.

Our analysis on two standard datasets, MPII [1] and

COCO [21], yields interesting insights that could prove use-

ful for shaping the future of robust deep-learning based HPE

systems. Our studies show that heatmap-based approaches

are more robust than direct joint-regression and among the

former, the networks that model compositional human con-

straints are more robust. We also find that imagenet pre-

training improves the robustness of network. We observe

that HPE networks are more difficult to attack than their

classification counterparts. Among targeted and un-targeted

attacks, the former are harder to obtain and also require

carefully tuned hyper-parameters. We also provide a thor-

ough study of adversarial attacks on the most popular HPE

backbone, Stacked Hourglass [26], and show that an attack

on features deep within the model is far more detrimental

than just on the final output. Then we show that universal

adversarial perturbations [15, 24] are detrimental to HPE

systems and supplement this finding with their visualiza-

tions which hallucinate body-joints. We show that the uni-

versal perturbations generalize fairly well across networks

that makes them a serious threat to HPE systems. Our anal-

ysis on the vulnerability of different joints towards adver-

sarial attacks reveal that the hip and the joints below the hip

are the most vulnerable while head and neck are most sta-

ble. Lastly we also test some image-processing techniques

on adversarial examples and show their effects
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(a) Target Pose (b) Attention-HG [8] (c) 8-Stacked-HG [26] (d) DeepPose [39] (e) Chained-Preds [13] (f) DLCM [37]Ta (g) 2-Stacked-HG [26]

Figure 1. Example of various targeted adversarial attacks of different networks on the MPII benchmark. (a) represents the target pose used

for computing the adversarial perturbation while in figures (b-g) : Green skeletons show the original predictions while the red skeletons

show the predictions for perturbed image. For more visualizations refer supp. mat.

2. Related Work

Soon after AlexNet that made deep neural networks,

DNNs for brevity, popular, [36] showed that DNNs are

easily fooled by noise computed using L-BFGS technique.

Later, [14] introduced Fast-Gradient-Sign-Method (FGSM)

that was more efficient using only gradient ascent instead

of L-BFGS. Then, [25] introduced Iterative-Gradient-Sign-

Method (IGSM) and [19] made it stronger by optimizing

for the least likely class. Since then there has been a lot

of work in this field that extended these attacks with dif-

ferent datasets, penalty functions and optimization meth-

ods [4, 5, 6, 9, 11, 20, 22, 25, 27, 29, 35]. An altogether dif-

ferent line of work employed DNNs to directly generate ad-

versarial perturbations from an input image [3, 30, 33, 41].

These approaches require complete access to the network

limiting their practicality for real-world application. Black-

box attacks [22, 28, 29] generalize across networks and do

not need access to the target network that makes them more

practical.

Most of the aforementioned attacks are image-specific

and need costly back-propagation through the entire net-

work. To mitigate this issue, a universal adversarial per-

turbation [15, 24] can be obtained for a DNN that can be

added to any image to fool the network. [24] show the ef-

fectiveness of universal attacks on the ImageNet, while [15]

analyzed the same for semantic segmentation. Mostly, the

study of adversarial attacks has been limited to image clas-

sification, only recently, they have been analyzed in other

settings such as image segmentation (again a per-pixel clas-

sification) [2, 12, 15, 30, 40, 42], object detection [7, 34],

visual question answering [43].

For human pose, on the other hand, there hasn’t been

much study of adversarial attacks and the closest work to

ours is [9] that explores metric specific loss functions for

different tasks. Their focus was on exploiting loss func-

tion frameworks to develop metric specific attacks and they

demonstrate their approach on classification, segmentation

and HPE. Therefore, their study on HPE does not cover it

in detail rather showcases it as application of their generic

framework. We, on the other hand, present a comprehensive

analysis of adversarial attack on the HPE systems to obtain

deeper insights.

3. Background, Notations and Experimental

Settings

This section contains background on HPE and adversar-

ial attack to facilitate understanding and the details of ex-

perimental settings with notations.

3.1. Human Pose Estimation (HPE)

It refers to inferring a set of 2D joint-locations or pose,

P = {P1, P2, . . . Pk} for k body joints from an input RGB

image, I , that contains a human. The first DNN based

approach, DeepPose [39], used AlexNet [18] followed by

direct regression for ground-truth P̃ from I . Later, [38]

introduced heatmaps that represents k joint-locations with

the help of k channels, one for each joint, with Gaussian

bumps centered at the corresponding joint locations. The

input image, I , is passed through multiple resolution banks

and multi-scales features from different resolutions are con-

catenated to regress for the heatmaps. In [26], the authors

introduced a recurring structure that feeds the previously

predicted heatmaps for further processing with image fea-

tures, referred to as Stacked Hourglasses, it has been used

as the backbone architecture in numerous works and led to

significant improvement in the performance over previous

approaches. In order to provide a comprehensive coverage

of HPE systems for our study we analyze five different ar-

chitectures.

DeepPose and Stacked-Hourglass or SHG for brevity

[26], are already explained in the paragraph above. We used

two different variants with 2 and 8 stacks termed as 2-SHG
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and 8-SHG. Chained-Prediction [13] casts HPE as a se-

quential joint prediction with a series of encoder-decoder

networks that predict heatmaps of joints, thus conditioning

the prediction of joints over the pre-computed joints. Hour-

glass Attention [8] incorporates multi-context attention by

utilizing CRFs to model the correlations between neigh-

bouring regions in the attention map. Deeply-Learned-

Compositional-Model or DLCM [37] uses hourglass

modules as backbone and exploits DNNs to learn the com-

positionality of the human body by enforcing a bone-based

part representation as the output of intermediate stacks.

With the use of only five hourglass modules, it outper-

forms other methods while being computationally cheaper.

A more detailed description of all the used architectures is

provided in the supp. mat. Sec. 1.

Whenever possible we use the released networks from

the authors, otherwise we implement ourselves. Further,

we use a standard protocol to evaluate the performance for

different networks on the validation sets that includes sim-

ilar cropping and data pre-processing. Therefore, our re-

ported results might be a little inferior to the reported re-

sults that employ flipping, multiple crops and other similar

techniques. In order to show the generalizability of our find-

ings, we study two different pose databases - MPII [1] and

COCO [21]. We use PCKh [1] and OKS [17] as metrics

for MPII and MS COCO, respectively. All the results are

reported on the validation set. Due to space constraint, we

show the results on MPII in this manuscript and refer to the

supp. mat. for the results on MS COCO.

3.1.1 Adversarial Attack Methods

Theoretically, adversarial attack consists of adding an ad-

versarial noise n, to the input I , of a network f(x; θ), that

changes the output y = f(I; θ).
Fast Gradient Sign Method [14] which explicitly bound

the maximum magnitude (l∞ norm) of every pixel are most

popular and relatively computationally cheap. FGSMs use

the scaled, by ǫ, sign of gradient w.r.t. the desired objective

to obtain n : ‖n‖∞ < ǫ. They can either be targeted or un-

targeted and single-step or iterative. An untargeted FGSM

attack (FGSM-U) simply increases the loss of the network

for a given input I to obtain perturbed input Ip as-

Ip = I + ǫ.sign(∇IL(f(I; θ), y)) (1)

Whereas, a targeted FGSM attack (FGSM-T), pushes the

output of the network towards a target yt. For classifica-

tion systems, yt can be easily obtained as the least likely or

target output of the network [20]. Unfortunately, HPE sys-

tems do not have a least likely target pose for a given input

image. Therefore, we choose at random one target pose, P t

from a pool of ground-truth poses from the validation set,

P = {P̂1, P̂2, . . . }, that gives a PCKh value of 0 for the

predicted P = f(I; θ) . This can be construed as selected

the most unlikely pose for a given image and leads to-

Ip = I − ǫ.sign(∇IL(f(I; θ), P
t)) (2)

Both untargeted and targeted FGSM attacks, can be ex-

tended to their iterative counterparts IGSM-U-N and

IGSM-T-N, respectively, that iterate N times to yield the fi-

nal perturbed image Ip starting with I . The perturbed image

Ipi for the ith iteration for untargeted (Eq. 3a) and targeted

(Eq. 3b) attack is given as-

Ipi = Cǫ(I, I
p
i−1

+ α.sign(∇p
I i−1L(f(I

p
i−1

; θ), y))) (3a)

Ipi = Cǫ(I, I
p
i−1

− α.sign(∇p
I i−1L(f(I

p
i−1

; θ), P t)))

(3b)

s.t. x0 − ǫ ≤ Cǫ(x0, xi) ≤ x0 + ǫ (3c)

where, Cǫ(x) clips x to [x− ǫ, x+ ǫ].
All the aforementioned attacks are image-specific and re-

quire costly back-propagation through the network for its

computation. Therefore, [24] proposed to learn image-

agnostic or universal perturbations from a representative

subset of images for a given image distribution. In our ex-

periments, however, we adopt the method in [15] to HPE

systems and obtain the universal perturbation u. Its an iter-

ative process that computes perturbations on training sam-

ples xi, or mini-batches of them, and aggregates them to

obtain the final u after re-scaling-

u = u+ δ.sign(∇xi
L(f(xi; θ), y) (4)

We fix δ = ǫ
200

, mini-batch size of 16 and ‖u‖∞ ∈ {8, 16},

because lower ǫ values hindered learning while higher val-

ues are perceptible and use the same setting for all the archi-

tectures. The obtained u can be simply added to any image

to attack the network, therefore, making it more widely ap-

plicable than network access attacks.

Since the performance of the used models differ, it

is not fair to compare the degradation due to adver-

sarial attacks using the drop in absolute performance.

Therefore, for untargeted and universal attacks, we report

(perturbed/original) ∗ 100 score ratio for which lower

values indicate more effective attack. For the targeted at-

tacks, we report the target PCKh score of the output w.r.t.

to the target, therefore, higher values indicate more effec-

tive attacks. The degress of intensity which measured by

the maximum permissible pixel differences between Ip and

I and denoted by ǫ is varied in {0.25, 0.5, 1, 2, 4, 8, 16, 32}.

For iterative attacks, we have chosen to report the effects

under a setting similar to that popularly employed to at-

tack classification systems and limit the maximum number

of iterations to 10, but the HPE systems are relatively ro-

bust, therefore, we also report the result with a maximum of

100 iterations. However, the targeted attacks are still diffi-

cult, therefore, they require 20 iterations. Overall, it yields
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Figure 2. Comparison of different types of attacks on all the models. (a) and (b) depict the relative PCKh as a function of ǫ for FGSM-U

and IGSM-U-10, respectively. (c) emphasizes the difference between direct regression and heatmap under IGSM-U-10 attack. (d) depict

the final PCKh with respect to the target for IGSM-T-20. (e) & (f) shows the relation between number of iterations and effectiveness of

untargeted and targeted attacks, respectively.

four different configurations of attacks IGSM-U/T-10/20,

and IGSM-U/T-100/100. Also, we observe that the optimal

value of the step-size, α, falls in the range [ ǫ
3
, ǫ
2
] for untar-

geted and in [ ǫ
9
, ǫ
7
] for targeted attacks. We report the results

of IGSM-U/T-100 with ǫ = 8 and refer to supp. mat. Sec.

4 for other values of ǫ, while IGSM-U/T-10/20 results are

reported for all ǫ values. Since this is a preliminary work on

attacks on HPE, we stick to the standard attack mechanisms

to provide insights into the problem.

4. Adversarial attack on HPE systems

This section starts with White Box Attacks, where we

have complete access to the target network, and study its ef-

fect under varying ǫ, number of iterations, architectures and

targeted vs. untargeted setting. Then we report results on

image-agnostic universal perturbations with varying ǫ and

different architectures with their visualizations to shed light

on their workings. We also report the effect of both attacks

in black-box mode, in which we learn the perturbation using

one network and use it to attack a target network to which

we have no access. We also report the vulnerability of dif-

ferent body joints towards adversarial attack followed by

a discussion of interesting insights pertaining the different

architecture’s robustness and effect of some simple image

processing based defense strategies. We also performed a

similar study of COCO [21] dataset and can be found in

supp. mat. Sec. 5.

4.1. White Box Attacks

The complete access to a network exposes it to a vari-

ety of different attacks. The main result for this section is

shown in Fig. 2 that plots the effect of FGSM-U, IGSM-U-

10 and IGSM-T-20 attacks vs. ǫ on different HPE architec-

tures described in Sec. 3.1.

4.1.1 HPE vs. Classification Systems

We first compare the robustness of HPE systems in general

to another task that involves per-pixel reasoning, semantic

segmentation (presented in [2]). A simple comparison be-

tween the relative drop in the performance for FGSM-U at-

tack on HPE Fig. 2a and semantic segmentation (ref. [2]

Fig. 2(a)) reveals that the HPE systems undergo less degra-

dation. While some part of the observed relative robustness

can be attributed to a more lenient metric, PCKh vs. IoU.

We believe that some of it perhaps comes from the succes-

sive down-sampling and up-sampling of the HourGlass in-
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troduces multi-scale processing, which has been previously

reported to be effective against adversarial attacks on se-

mantic segmentation

4.1.2 Robustness of Different Models

The observations from Fig. 2 reveal that the order of robust-

ness of different models across different attacks is more or

less consistent. We can observe that the heatmap based ap-

proaches are more robust than direct regression (DeepPose)

based approach. This is because the direct-regression loss

function is also a measure of PCKh after thresholding while

heatmap loss produces Gaussian bumps at joint-location,

which is not as strongly correlated to PCKh. Also, heatmap

predictions, unlike regressed values, are implicitly bounded

to be valid image coordinates.

In order to make a fair comparison between, we use the

same ResNet backbone and use a simple regression loss

in one case, and de-conv layers followed by heatmap re-

gression in the other case. We name them as ResDec-

Pre and ResDec-NoPre for resnet-deconvolution with and

without imagenet pretraining. As seen in Fig 2c, relative

performance for untargeted attacks is noticeably higher for

heatmap loss. Also for ResDec-Pre, the relative perfor-

mance is even higher, validating the findings of [16]. Strik-

ingly, ResDec-Pre is almost as robust as the most robust

network - DLCM. This advocates a requirement to move

away from the popular regression-based 3D-HPE frame-

works [10, 23, 32, 44] (see supp. mat. Sec. 8 for details

on 3D-HPE experiments). We leave theoretical understand-

ing of robustness caused by imagenet pretraining a question

for future study.

Due to the conditional joint prediction nature of the ar-

chitecture that propagates the perturbation in one joint to

the rest of the joints, Chained-Prediction turns out to be the

least robust among the heatmap-based approaches. We ob-

serve that DLCM is more robust than 2/8-SHG and Attn-

HG against all attacks, perhaps due to DLCM’s imposition

of human skeleton topology. This encourages further ex-

ploration of structure-aware models to counter adversarial

examples.

4.1.3 Effect of the Number of Iterations on the Attack

Fig. 2e 2f plots the relative drop and target PCKh for

untargeted and targeted attacks, respectively, for ǫ = 8
with 10 and 100 iterations. We observe that moving from

10 to 100 iterations results in dramatic degradation for all

the networks under both the settings. This observation is

in contrast with the effect of IGSMs on classification or

semantic segmentation problems, where [19] finds that

min(⌈1.25ǫ⌉, ǫ + 4) iterations are sufficient for complete

degradation. HPE, on the other hand, often needs up to 100

iterations for the same. Unfortunately, with enough itera-

tions, all the systems degrade by over 95% which shows

that all models are vulnerable for carefully designed pertur-

bations. See supp. mat. Sec. 4 for results on all ǫ values.

4.1.4 Stacked Hourglass Study

Since most HPE systems build on the Stacked-Hourglass

backbone [26], we carry out a thorough analysis of ad-

versarial attack on SHG architecture with different network

hyper-parameters such as depth (number of stacks). First,

we find that increasing the number of hourglasses from 2 to

8 increases the robustness of the model; a fact clearly visible

from Fig. 2a 2b 2d. Next, we study the effect of simulta-

neous perturbation of outputs of all the stacks of SHG, in-

dicated by suffix ALL, and observe that the attacks become

more effective, again evident from Fig. 2a 2b 2d. Specif-

ically, 2-SHG-ALL and 8-SHG-ALL attacks increased the

target PCKh from 66.3 to 80.5 and from 60.5 to 73.0, re-

spectively. This is expected because downstream stacks are

supposed to improve upon the predictions of the upstream

ones and hence, incorrect prediction upstream will cascade

into errors in the final output. Further, intermediate super-

vision would provide better gradient flow especially since

the stacks are not connected via residual connections. In-

terestingly, 2-SHG-ALL IGSM-T-20 attack brings down its

performance even below Chained-Prediction and DeepPose

in, the two worst performing architectures in terms of ro-

bustness to adversarial attacks!

4.1.5 Targeted vs. Untargeted Attacks

Targeted attacks are more difficult than untargeted ones as

evidenced from the fact that targeted attacks require higher

number of iterations as compared to an untargeted attack,

20 vs. 10. It is because an untargeted attack can sim-

ply take large steps in the direction of increasing loss for

I , whereas, the targeted attack requires finding the optimal

Ip : ‖I − Ip‖∞ <= ǫ where the loss L(f(Ip; θ), P t) is

small; a more difficult problem. We observe that the opti-

mal value of step-size α for IGSM-T is found to be almost

3 times smaller than that of IGSM-U as expected. However,

small step-size based iterative targeted attacks with suffi-

cient iterations, around 100, can still lead to almost 100%

target PCKh Fig 2e, 2f. As ǫ increases, different archi-

tectures under untargeted attack converge in performance

while they diverge for targeted attacks! It indicates that un-

der extreme targeted attack different networks perform sig-

nificantly different in terms of their robustness. It is worth

noting that the Relative PCKh (relative degradation w.r.t.

original target) was almost equal in both IGSM-U-10 &

IGSM-T-20 (refer to supp. mat. Tables 4,6).
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(a) 2-Stacked Hourglass (b) Chained Predictions (c) Attention Hourglass

(d) 8-Stacked Hourglass (e) DLCM (f) DeepPose

Figure 3. Visualization of image-agnostic universal perturbations, with ǫ = 8, for different networks scaled between 0 to 255 for better

visualization. Note the hallucinated body-joints, mostly arms and limbs to fool HPE networks. More vis. in supp. mat. Fig 4-6

8-SHG 8-SHG-ALL Attn-HG DLCM 2-SHG-ALL 2-SHG Chained DeepPose Vulner.

T
a

rg
et

N
et

w
o

rk 8-SHG 8.85 5.92 53.32 56.61 53.45 68.17 63.23 86.7 63.58

Attn-HG 41.92 48.47 11.47 57.62 61.05 71.68 68.1 84.78 61.95

DLCM 46.76 47.09 60.07 12.75 64.45 74.02 67.41 84.93 63.53

2-SHG 51.95 55.17 75.28 70.08 10.35 15.7 51.6 88.59 65.45

Chained 77.65 79.7 82.57 81.15 72.08 78.45 10.96 75.36 78.14

DeepPose 74.19 70.44 75.12 75.03 72.23 75.6 42.04 2.78 69.24
Table 1. The results of all source target pairs under doubly black-box attack setting. Rows represent the relative degradation in the target

network when attacked by the network in the column. Vulner. stands for ease of attack under doubly black-box setting. Boldface shows

the strongest black box attack for a model and underlined numbers indicate the performance of the model on itself

4.2. Image­Agnostic Adversarial Perturbations

We follow Sec. 3.1.1 to obtain the universal adversar-

ial perturbations for all the considered architectures. Once

obtained, they can be simply added to any input image to

fool the corresponding architecture, making them practi-

cally useful in real-world scenario. Fig. 3 shows the univer-

sal perturbations, scaled between 0 to 255 for better visual-

ization (more visualizations can be found in supp. mat. Fig

4-6). It is, to the best of our knowledge, the first visualiza-

tion of such perturbations for HPE, which reveal semantic

hallucinations. A closer look reveals that universal pertur-

bations confuse HPE systems by hallucinating body-joints,

mostly limbs, throughout the image. Visual inspection of

the skeletons predicted on these perturbations reveal sim-

ilarity with hallucinated joints and can be found in Supp.

mat. Fig. 8-13. Even more surprisingly, some networks

have similar prediction across different images despite the

fact that these perturbations were not explicitly designed to

predict these specific outputs. It is worth noting that while

all visualizations of UAP resemble the human body, visual-

ization of DeepPose UAP does not do so and since the UAP

are computed as the gradient averaged over all training im-

ages, this means that the heatmap based approaches have

minimized loss when the joints are discernible, but Deep-

Pose has not.
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Model and Attack Ankle Knee Hip Neck Head Shoulder Elbow Wrist

Relative PCKh

DeepPose-UI 0.63 1.24 4.43 17.52 13.11 4.39 2.35 2.2

2-SHGlass-UI 3.82 4.62 2.82 41.89 23.39 24.79 14.48 13.4

8-SHGlass-UI 8.79 10.9 3.04 45.54 34.61 29.67 20.65 20.54

Chained-Predictions-UI 2.79 2.07 3.53 22.7 15.73 11.87 4.05 3.77

Attention-HG-UI 6.52 7.61 3.05 39.31 25.01 21.35 17.54 16.96

DLCM-UI 6.28 6.79 2.12 45.69 29.72 28.04 17.75 16.4

Average 4.81 5.54 3.12 35.44 23.60 20.02 12.80 12.22

Target PCKh

DeepPose-TI 59.22 73.04 84.79 81.64 73.0 82.4 77.93 69.33

2-SHGlass-TI 62.61 69.65 86.0 70.05 49.79 72.73 64.68 47.59

8-SHGlass-TI 48.24 54.02 83.86 71.94 51.38 70.53 56.33 43.55

Chained-Predictions-TI 70.9 77.53 84.59 74.64 59.29 75.26 72.28 60.2

Attention-HG-TI 47.25 52.06 77.97 60.46 39.53 57.22 52.59 48.62

DLCM-TI 47.8 54.99 74.63 57.93 38.88 55.26 48.58 39.57

Average 56.00 63.55 81.97 69.44 51.97 68.9 62.07 51.47
Table 2. Relative PCKh of different body-joints for untargeted attacks across different networks. Boldface and underlined numbers indicate

the most and the least vulnerable joints, respectively. Note that hips, knee and ankles are more vulnerable than the rest.

Universal perturbations degrade the original perfor-

mance, averaged over all models, on the training (used to

obtain them in the first place) and validation sets to 6.4%

and 9.9% of their original value, respectively with ǫ = 16.

It clearly showing their strong effect, see supp. mat. for

results with ǫ = 8. Network-wise results on the effect of

universal perturbations are reported in Table 1. Surpris-

ingly, their effect on the performance is similar in magni-

tude to image-specific iterative attacks, 9.9% vs. about 8%

for latter (ǫ = 16). So these are computationally efficient

while being equivalent to Image-Dependent methods. We

also study the dependency of universal perturbations on the

amount of training data needed, as in [24], by obtaining

them with varying number of samples from the training set.

Please refer to supp. mat. Sec. 4.4 that shows the variation

of degradation ratio vs. number of samples. We observe

that even with 10% data samples, i.e. only 2500 images, the

obtained universal perturbations degrade the performance

to 18% vs. 9.9% with all the 25925 samples.

4.3. Black­Box Attacks

This setting refers to an attack on target network using

adversarial perturbations learned from a different network,

referred to as source network. We do not have access to the

target network at any stage except while evaluating the per-

formance. The perturbations can either be image-specific,

obtained by FGSM-U/T or IGSM-U/T from the input im-

age, or image-agnostic universal perturbations. The latter

gives rise to doubly black-box attacks i.e. we need neither

access to the target network nor do we use the image to

obtain the perturbation. We report all the combinations of

(S −→ T ) pairs and tabulate the results in Table 4.1.5 in

supp. mat., due to space constraints. In general, we observe

30-40% degradation in the target network’s performance.

Doubly black-box attacks are reported in Table 1 where

we can again observe fair generalization with 30-40%

cross-network degradation, on an average. We observe

that the generalization is stronger across similar architec-

tures. Specifically, Stacked-Hourglass’s perturbation de-

grades DLCM and Attention-Hourglass to 50%, but Deep-

Pose and Chained-Prediction to only 75%.

4.4. Body­Joint Vulnerability Towards Attack

In order to understand the effect of adversarial attack on

different body joints, we report per-joint accuracy under dif-

ferent architectures and attack-types for MPII dataset in Ta-

ble 2. For left-right symmetric body-joints (ankle, knee,

hip, shoulder, elbow and wrist), we report the left-right av-

erage degradation. Its evident that head and neck are the

most robust while hips are the most vulnerable across dif-

ferent attacks. It could be due to the fact that the HPE net-

works are trained on cropped images that have tightly local-

ized head in most of the samples, whereas limbs are spread

throughout the images at weird locations. Therefore, it is

difficult to fool the network in predicting head and neck in

some other region. Moreover, we observe that the relative

performance of different joints vary dramatically for untar-

geted attacks while it it doesn’t vary so much for targeted

attacks. These observations can motivate future work fo-

cus on understanding and improving robustness of the more

vulnerable joints.

5. Simple Image Processing for Defense

In this section we discuss the effect of simple image-

processing based defense strategies against adversarial at-

tacks on HPE systems. Since this is a preliminary work on
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adversarial attacks on human pose, we focus only on com-

putationally cheap methods to mitigate the effect of the dif-

ferent attacks.

Recently [40], showed that the adversarial attacks in se-

mantic segmentation can be detected by analyzing the the

consistency of the predicted segmentation map. Similar rea-

soning can be extended to HPE systems and we thought

that the predicted skeletons from adversarially perturbed

image would look unrealistic. Surprisingly, visual inspec-

tion of the skeletons reveals that the skeletons are seman-

tically meaningful. It could be due to the implicit learning

of human-body structure that prevents the networks from

producing structurally garbage results even after adversar-

ial attacks. Secondly, we thought of checking the quality of

Gaussian bumps under adversarial attack thinking that they

might distort from being Gaussian. Again, we observe that

the bumps still resemble Gaussian which can be quantita-

tively measured using the KL divergence and is reported in

the sup. mat. Sec. 2. Therefore, even this measure cannot

be used for detecting the presence of adversarial attack.

We also tried simple geometric and image-processing

based defense strategies like flipping and smoothing. As

expected, smoothing worked well for both image-specific

and image-agnostic attacks, a finding supported by multi-

ple research work in the past [2, 31]. Also, we observe that

flipping an image-specific perturbations renders it relatively

ineffective. Specifically, a non-flipped version of image-

specific perturbation degrades the network to a range of 5-

10% whereas, its flipped version can only reduce it to about

70-75%. This shows that image-specific perturbations are

truly specific and don’t work with flipping. On the other

hand, universal perturbations were equally detrimental un-

der flipping too! It can easily be explained on the basis

of the fact that universal perturbations are generic while

image-dependent perturbation are very specifically aligned.

The same is also evident from the visualization of universal

perturbations.

6. Conclusion

We performed a dense and exhaustive analysis of vari-

ous adversarial attacks on human pose estimation systems,

using MPII [1] & COCO [21] and found some interest-

ing trends in how design choices affect robustness. We re-

port that the image-agnostic universal perturbations are as

detrimental an attack as image-specific iterative approaches

while being computationally much cheaper to obtain. Our

visualizations of universal perturbations exhibit a strikingly

human-like hallucinated array of body-joints to fool the net-

works. Further our analyses on the vulnerability of differ-

ent joints helped identifying the most and least robust body

parts under adversarial attack.
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